RECYCLABILITY EVALUATION PROTOCOL FOR PP CONTAINERS

Standard Laboratory Practice

Version 1.0

Published on 16th June 2020
CONTENTS

1. Introduction and purpose of the Protocol ... 5
2. Scope of the Protocol ... 5
3. Disclaimer ... 6
4. Laboratory Test Methodology ... 6
 4.1. Control Selection .. 8
 4.2. Pre-treatment ... 8
 4.2.1. Grinding ... 8
 4.2.2. Washing .. 9
 4.2.3. Floatation ... 9
 4.2.4. Drying .. 10
 4.2.5. Air Elutriation .. 10
4.3. Extrusion .. 11
 5.1. Flake Blends Preparation .. 11
 5.2. Flake Blends Composition ... 11
 5.3. Pellet Production ... 12
 5.3.1. Filtration Test (optional) .. 13
 5.3.2. Pellet Properties Evaluation .. 14
 5. Extrusion .. 11
 6. Conversion ... 15
 6.1. Pellet Blends Composition .. 15
 6.2. Bottles blow molding ... 16
 6.2.1. Bottle Properties Evaluation .. 17
 6.2.2. Tensile properties testing .. 18
 6.3. Sheets extrusion ... 19
 6.3.1. Sheet Properties Evaluation .. 20
 6.4. Injection Molding ... 20
 6.4.1. multipurpose specimens and plates Evaluation 22
Annex I - Control samples selection ... 23
GLOSSARY

A.0 100% control container flakes
A.25 blend 75/25 control/innovation flakes
A.50 blend 50/50 control/innovation flakes
A.100 100% innovation flakes
ASTM American Society for Testing and Materials
B.0 bottle with 100% control pellets
B.25 bottle with 87.5/12.5 control/innovation pellets
B.50 bottle with 75/25 control/innovation pellets
B.100 bottle with 50/50 control/innovation pellets
C.0 sheet with 100% control pellets
C.25 sheet with 87.5/12.5 control/innovation pellets
C.50 sheet with 75/25 control/innovation pellets
C.100 sheet with 50/50 control/innovation pellets
D.0 plate with 100% pellets
D.25 plate with 87.5/12.5 control/innovation pellets
D.50 plate with 75/25 control/innovation pellets
D.100 plate with 50/50 control/innovation pellets
EN European Standard
Innovation: new container, flakes or pellets from new container which has to be tested
ISO International Organization for Standardization
MFI Melt Flow Index
PE Polyethylene
PP Polypropylene
PVC Poly Vinyl Chloride
TC Technical Committee
TGA Thermo Gravimetrical Analysis
DISCLAIMER

RecyClass is an initiative aiming at enhancing and evaluating the recyclability of plastic packaging through a technical perspective. The Plastics Recyclability Evaluation Protocols will promote recyclability by encouraging industry to test new plastic technologies, materials or product before market launch and giving advice and recommendations to the companies. The Recyclability Evaluation Protocols are available for download in the PRE and RecyClass websites. Companies providing plastic packaging concepts are encouraged to use them to self-assess the impact of their solutions on recyclability and highlight potential issues. However, compliance to a Recyclability Evaluation Protocol is not a replacement for an official assessment and may not be used as a marketing tool. All tests must follow the Evaluation Protocols recommended by the RecyClass Technical Committees and must be conducted by an independent laboratory approved by RecyClass which has no legal affiliation to the applicant. More information is reported in the RecyClass Internal Procedures available in the RecyClass website.”
1. **Introduction and Purpose of the Protocol**

The “Recyclability Evaluation Protocol for PP containers” referred to in this document as “The Protocol” describes the methodology that must be followed by the Applicant at a laboratory scale in order to determine if a plastic packaging innovation is compatible with the post-consumer PP recycling stream. The Protocol targets companies responsible for introducing a packaging product (innovation) into the market. The Applicant shall proceed with the Protocol as established in the Assessment Process for Applicants of Recyclability Evaluation in the “RecyClass 1 Internal Procedures”.

The Protocol analyzes whether an innovation will undergo the necessary pre-treatment, extrusion and conversion steps described in this methodology at a laboratory scale without negatively impacting the recycling process. It aims to guarantee recyclability2 of plastics packaging while encouraging innovation in the PP market. The overall goal is to maintain the protection of packaged goods and their marketing display functions without obstructing the proper functioning of the PP recycling process.

This document provides guidance on the tests methodology that shall be followed, including benchmark recommendations to guide the interpretation of the results.

PP terminology as it is used in this document, refers to rigid plastic containers (bottles, thermoforming, thin wall packaging) predominantly used for packaging liquids, cosmetics, and detergents, as well as food contact applications.

2. **Scope of the Protocol**

The scope of the Protocol covers any innovation introduced to the existing packaging solutions for PP. Prior to initiating the evaluation, the Applicant shall review the Design for Recycling Guidelines for natural and colored PP containers3 in order to confirm that the PP innovation is compatible with these requirements.

The following packaging solutions and/or innovations are covered by the scope of this Protocol:

1. PP resins
2. Barrier and coating materials
3. Mineral fillers and additives
4. Non-PP closure systems and lidding films
5. Non-PP liners, seals and valves
6. Non-PP labels and sleeves
7. Adhesives

1 The RecyClass tool assesses the recyclability of a plastic packaging providing a ranking from A to F. RecyClass also provides specific indications and recommendations on how to improve packaging design to fit current recycling technologies. More information at www.recyclass.eu

2 Recyclability definition according to PRE: Plastics must meet four conditions for a product to be considered recyclable: 1. The product must be made with a plastic that is collected for recycling, has market value and/or is supported by a legislatively mandated program. 2. The product must be sorted and aggregated into defined streams for recycling processes. 3. The product can be processed and reclaimed/recycled with commercial recycling processes. 4. The recycled plastic becomes a raw material that is used in the production of new products.

3 Design for Recycling Guidelines https://recyclass.eu/recyclass/design-for-recycling-guidelines/
8. Printing and Inks
9. Attachments

Packaging containing aluminum, metal, foam, degradable plastics, black carbon surface, as well as PVC and PVDC shall be separately considered by the RecyClass PP Technical Committee in order to assess their suitability under the scope of this Protocol.

3. DISCLAIMER

The Protocol is created to represent as accurately as possible how the current PP recycling works at an industrial scale. RecyClass PP Technical Committee reserves the right for further testing if necessary, to issue an additional opinion on the recyclability of the tested packaging.

Within RecyClass, “easy-to-empty” and “easy-to-access” indexes are important factors when considering the recyclability of a packaging. At the state of the art, at PP mechanical recycling facilities washing operation typically uses mild conditions, no detergents nor strong chemicals. Consequently, any product residue constitutes an impurity for the recycling stream. Anyway, RecyClass encourages testing to verify that the packaging is “easy-to-empty” and therefore ensures the minimum amount of leftover material at the end of its useful life.

Nonetheless, this factor is beyond the scope of this Protocol and can be assessed with the RecyClass tool.

4. LABORATORY TEST METHODOLOGY

This methodology aims to reproduce the recycling process at a small scale to determine the suitability of an innovation material for the PP recycling stream.

See below in Figure 1 a diagram where the flow of the methodology is described.
The methodology described above shall be followed precisely and any modifications or problems must be noted during the testing phase.

An Evaluation Report compiling all the results obtained shall be prepared by the lab to report to the RecyClass PP Technical Committee which will interpret the results. Any remarks during following the Protocol shall be also noted down.
4.1. **CONTROL SELECTION**

The control PP for use following the Protocol can be selected by:

- **Option 1**: If there is a PP container on the market, similar to the innovation and is known to be recyclable, it can be selected as the control for this Protocol, with/upon the approval of the RecyClass PP TC.

- **Option 2**: If there is a PP container known to be recyclable, consisting of the same base PP virgin materials as the Innovation, except/apart from the specific ingredient/feature being evaluated, it can be selected as the control for this Protocol, with the approval of the RecyClass PP TC.

- **Option 3**: The Applicant can select a PP resin with the same critical technical specifications for MFI and density as the innovation article, ±10% and ±0.005 density can be used as the control for this Protocol, with/upon the approval of RecyClass PP TC.

These options are to be used to make both the control flakes and the blends with innovation container flakes that will contain the additive, coating, label, adhesive or multilayer resin for the recycle study.

A selection of control samples to be used is reported in Annex I.

For the purpose of the tests the Applicant should provide at least 10 kg amount of innovation material (as packaging) and 25 kg amount of control material (as packaging) which allows for blend preparations of at least 5 kg each. More innovation material could be requested if optional tests are required by the RecyClass PP Technical Committee. It is worth pointing out that the innovation to be tested is not limited to the main body of the packaging but to all its parts. Therefore, the innovation has to be submitted to the laboratory procedures with labels, adhesives, closure system, liners, seals, valves (if any). If it can be correctly argued that labels and adhesives have no impact on the innovation, the innovation samples can be processed without the presence of labels and adhesives.

4.2. **PRE-TREATMENT**

4.2.1. **GRINDING**

Control and innovation PP containers are separately grinded in order to fit the throat of a standard laboratory extruder.

Procedure:
- Grind separately control and innovation samples to flakes of 3 to 15 mm.
- Store in separate containers.
4.2.2. Washing

At the state of the art, European PP recycling lines use mild washing conditions, no detergents nor strong chemicals. The procedure takes care of labels, adhesives, coatings, and printing present in the innovation PP container.

The following procedure has to be utilized for both control and innovation samples, separately.

Procedure:
- Prepare the wash in a vessel at a 1:4 ratio (10 kg flakes vs 40 l water) with tap water. No added detergents or caustic soda.
- Heat the wash at 40°C.
- Wash each sample separately at a 1:4 ratio (10 kg flakes vs 40 l water) at 1.000 rpm for 5 minutes.
- Save a wash sample for visual evaluations
- Rinse the flakes in the strainer with cold running tap water and stir vigorously for 5 minutes using manual stirring bar. Then drain the material.
- Take photos at each step.

4.2.3. Floatation

Following the washing, the flotation process allows flake separation by density as occurring in the float/sink tank used in an industrial recycling line. For a suitable recycling, packaging design with combinations of polypropylene and other materials that float in water should be avoided. Non-PP components floating together with PP flakes cannot be further separated and are extruded with PP. This poses relevant concerns both in the process operations and in the quality of the recyclate, undermining its applications such as containers and sheets.

The following procedure has to be utilized for both control and innovation samples, separately.

Procedure
 - Fill a vessel with tap water at a 1:6 ratio (10 kg washed flakes vs 60 l water).
 - Put each sample separately in the water and stir at 500 rpm for 2 minutes.
 - Stop the stirrer and allow the water to rest for 2 minutes.
 - Remove all the materials that float at the surface with a sieve.
 - Take photos of the floating and sinking fractions separately
 - Save the wash for visual evaluation

The test is passed if 100% of olefin material is floating. It means non-PP material cannot stick or not get separated from PP and cause PP to sink, resulting in yield losses or stay with PP and contaminate the PP stream.

The efficiency of the sink/float separation should be measured using 50 g of washed flakes of innovative samples and a graduated beaker filled with tap water, as described by the following
procedure. Repeat the procedure for washed and dried innovation flakes, with and without caps and labels.

Procedure
- Fill a 1 l graduated beaker with 700 ml of tap water (pH between 7 and 8).
- Boil the water for 10 minutes, and then cool at room temperature.
- Transfer 300 ml of water in a graduated beaker.
- Put the innovative sample in the water and stir at 500 rpm for 2 minutes.
- Stop the magnetic stirrer and allow the water to rest for 2 minutes.
- Take photo of the beaker.
- Remove all particles that float at the surface with a sieve.
- Take photos of the floating and sinking fractions separately.
- Save the wash for visual evaluation.
- Dry the floating fraction for 1 hours at 80 °C in a bed desiccant or 3 hours at 65 °C with air.
- Cool to room temperature, weigh and record the weight of the float fraction.
- Repeat the procedure with 50 g of the innovation flakes without caps and labels (if any).
- Calculate the test efficiency as \(\frac{\text{weight of sinking fraction}}{\text{weight of innovative sample}} \times 100 \) (in %), separately for the innovation samples with and without caps and labels.

4.2.4. **Drying**

Reduce the flake moisture with ambient air to release surface moisture to less than 1%.

Procedure:
- Dry the flakes collected after floatation with air at room temperature for 24 h, without the application of vacuum or heat sources.

4.2.5. **Air Elutriation**

Control and innovation PP flakes are separately elutriated with air to remove light fraction.

Procedure:
- Elutriate flakes with air with one pass and with less than 2% loss set for the control flakes.
5. **Extrusion**

5.1. **Flake Blends Preparation**

For each sample obtained, to evaluate and record the properties of innovation PP container against control as laid out in this Protocol, a set of flake blends is prepared as described in Table 1. Blends shall be produced once the control and innovation containers have separately gone through all pre-treatment steps described below.

Keep separated the control and innovation flakes obtained following the previous steps, and air dry for 24 h at ambient air. Then, according to the values reported in Table 1 prepare three different blends with 100% control (and 0% innovation), 75% control - 25% innovation, and 50% control - 50% innovation, and tag them respectively as A.0, A.25 and A.50.

Eventually, depending on the application and its market penetration, the TC can ask the Applicant also to perform the tests with a sample of 100% innovation (i.e. A.100, by replacing the test with A.25).

For the purpose of the tests the Applicant should provide enough innovation and control materials which allows for the blend preparations. The laboratory carrying out the Protocol testing can define the amounts according to their best knowledge.

5.2. **Flake Blends Composition**

Three different blends with 0%, 25% and 50% of innovation PP container, will be prepared as described in Table 1.

Table 1: Flake blends composition to produce pellets

<table>
<thead>
<tr>
<th>Blend</th>
<th>Composition</th>
<th>% Control</th>
<th>% Innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.0</td>
<td>100% Control</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>A.25</td>
<td>75% Control 25% Innovation</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>A.50</td>
<td>50% Control 50% Innovation</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>OPTIONAL A.100</td>
<td>100% innovation</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>
5.3. Pellet Production

Both control and innovation flakes can be mixed manually before extrusion for blends preparation. The flakes will be dried at the same conditions with a desiccant bed drying unit or with hot air and extruded at temperatures of 230 °C. The extrudate will be melt filtered at 120 microns. Control flake sample A.0 has to be extruded first. Further size reduction before extrusion is acceptable if needed to allow good feeding of the material into the extruder. See additional information in Table 2.

Table 2: Pellet production purpose & overview

<table>
<thead>
<tr>
<th>Flake Compositions</th>
<th>Kg of blend required</th>
<th>Purpose of blend</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.0 100% Control flake</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>All tests compared to control values</td>
</tr>
<tr>
<td>A.25 75% Control with 25% innovation</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>Required for information on the impact of concentration of the innovation on recycling (comparison to control values)</td>
</tr>
<tr>
<td>A.50 50% Control with 50% innovation</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>Required for comparison to A.25 and control values</td>
</tr>
<tr>
<td>OPTIONAL A.100 100% innovation</td>
<td>Per lab requirement for a 30 minute run time</td>
<td>Optional, for comparison to A.50 and control values</td>
</tr>
</tbody>
</table>

Procedure:
- Dry samples A.0, A.25 and A.50 with a bed desiccant for 2 hours at 90 °C or with hot air at 65 °C for 3 hours.
- Extrude for first the sample A.0 (the control blend) at a temperature of 230 °C and with a 120 µm melt filter pack, for no less than 30 minutes
- Monitor the extrusion process for heat stability.
- If the process doesn’t reach steady state conditions (i.e. pressure and/or temperature increase), extrude for no less than 1 h.
- Rapidly cool the extrudate in a water bath and fed into a pelletizer.
- The pelletizer speed has to be controlled to get a final pellet with a diameter of 3 mm.
- Monitor pressure build-up during pelletizing and report significant differences.
- Randomly collect the pellets to perform all the characterizations reported in Table 3.
- Change the melt filter pack between samples for visual examination.
- Be sure to produce enough pellets for all the tests, including the conversion tests.
Record properties' results in Table 3. The processing conditions used for all the samples must be identical. If some operating conditions have to be modified for A.25 and A.50 samples, this information must be documented in the report. A small amount of each sample (50 g) will be retained for RecyClass PP Technical Committee and the Applicant. The extruded pellets will be tested for pellet properties evaluation (Table 3). The pellets of the test samples will be compared with the pellets of the control sample. All pellets should meet the requirements reported in the Table 3.

If filterability is seen as a potential problem for the innovative samples, a dedicated filter test should be requested by the RecyClass PP Technical Committee.

5.3.1. Filtration Test (Optional)

Filter contamination problems may occur when one of the components in the innovation sample is causing gels, larger particles, or releases degraded particles. Pressure drop has to be monitored during pelletizing since a pressure increase is an indication of the risk of filter contamination. If from previous step, the monitoring of pressure-drop and the visual inspection of the filter after the pelletization induce to further analyze contamination, a dedicated filtration test should be done. To limit the test duration, the innovation sample will not be mixed with control PP.

At least 5 kg of pellets from the pure control PP and the pure innovation PP samples will be separately extruded for a minimum of 30 minutes and filtered using a 120 microns screen pack. The 100% control sample has to be extruded for first.

Procedure:
- Dry the control sample before to be extruded with a bed desiccant for 2 hours at 90 °C or with hot air at 65 °C for 3 hours.
- Extrude the sample at a temperature of 230 °C and with a 120µm melt filter pack, for no less than 30 minutes.
- If the process doesn’t reach steady state conditions (i.e. pressure or temperature increase), extrude for no less than 1 h.
- If required, small changes in the process parameters are admitted keeping the extrusion stable over the time but have to be recorded. However, continuous adjustments of the operating parameters during the runs to overcome steady-state conditions are not admitted.
- Monitor the pressure drop during the test and register variations.
- Repeat the procedure for the innovation sample with the identical operating parameters used for the control sample filtration.

The test is passed if the pressure before the filter doesn’t double respect to the start pressure during or at the end of the run.
5.3.2. Pellet Properties Evaluation

Table 3: Pellet properties evaluation

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Result</th>
<th>Standard</th>
<th>Benchmark Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Density (kg/m³)</td>
<td>ISO 60 or EN 15345</td>
<td>Minimum 480 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Density (kg/m³)</td>
<td>ISO 1183-1</td>
<td>A.25 and A.50 (and eventually A.100 lower than 0.920 g/cm³ for natural containers and lower than 0.950 g/cm³ for colored containers</td>
<td></td>
</tr>
<tr>
<td>Melt Index (g/10 min)</td>
<td>ISO 1133-1 (230 °C/2.16kg)</td>
<td>A.25 and A.50 (and eventually A.100 <15% respect to A.0)</td>
<td></td>
</tr>
<tr>
<td>Ash content (%)</td>
<td>ISO 3451-1 (muffle) or ISO 11358 (TGA)</td>
<td>A.50 lower than 1% (A.100 lower than 2%)</td>
<td></td>
</tr>
<tr>
<td>Filtration (µm)</td>
<td>Visual inspection</td>
<td>No build-up on screen</td>
<td></td>
</tr>
<tr>
<td>Moisture (% weight)</td>
<td>Moisture analyzer</td>
<td>< 0.1%</td>
<td></td>
</tr>
<tr>
<td>Differential Scanning Calorimetry (°C)</td>
<td>ISO 11357-3</td>
<td>Full thermogram (0 – 240 °C)</td>
<td></td>
</tr>
<tr>
<td>Impurities</td>
<td>Visual inspection</td>
<td>Record</td>
<td></td>
</tr>
<tr>
<td>Surface appearance</td>
<td>Visual inspection</td>
<td>Record</td>
<td></td>
</tr>
<tr>
<td>Volatiles (%)</td>
<td>10 g air-dried pellets exposed to 180°C for 10 minutes</td>
<td>±0.1% for A.25 and A.50 (and eventually A.100) respect to A.0</td>
<td></td>
</tr>
<tr>
<td>PE (%)</td>
<td>Differential Scanning Calorimetry or Spectroscopic measurement</td>
<td>No more than 5% for A.25 and A.50 (and eventually A.100).</td>
<td></td>
</tr>
<tr>
<td>Reflection Colour</td>
<td>(L*, b*, a*)</td>
<td>Record</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Delta Pressure (MPa)</td>
<td>Measure it after extruding through 120 microns for the stable 30 minutes run time</td>
<td>No more than 10% higher pressure respect to the control sample</td>
<td></td>
</tr>
<tr>
<td>Extrusion process</td>
<td>Unusual sticking, fumes, odor and any build-up</td>
<td>Record</td>
<td></td>
</tr>
</tbody>
</table>

6. **CONVERSION**

Based on the obtained results, the RecyClass PP Technical Committee will decide if the innovation presents some critical properties. On that basis, the Technical Committee reserves the right to further test the innovation. Otherwise, if the results are aligned with PP recyclate specimens the Technical Committee and the Applicant will define the way to further test the innovation on the base of the main applications available on the market.

The Protocol aims to assess the highest-value recyclate application. The converting process should be same as production process of each innovation product, (1) blow molding bottle, (2) extrusion sheet, (3) Injection molding. For example, if innovation product is made by injection molding, the converting test also should be done by injection molding and not blow molding, because PP resin for injection molding is not suitable for extrusion blow molding due to its high MFI.

However, the RecyClass PP Technical Committee according with the Applicant could decide to test the innovation for a different application.

In case of bottles or sheets production, three blends of innovation and control pellets will be produced aiming to assess different innovation concentration in the recycling stream, as following reported. This step will be skipped in case of injection molding. It means that the pellets will be tested as it is without any dilution with virgin material.

6.1. **Pellet Blends Composition**

Once PP pellets have been produced and tested, three additional blends of at 50% virgin – 50% blend A shall be produced for converting tests. Keep separated the pellet samples previously produced and dry it for 10 minutes at 60°C. Then according to the values reported in following Table 4 prepare three different blends with 0% innovation (50% virgin and 50% A.0 pellets), 12.5% innovation (50% virgin and 50% A.25 pellets), and 25% innovation (50% virgin and 50% A.50 pellets), and tag them as samples B.0, B.25 and B.50 respectively.
Pellet blends will be composed of 0%, 12.5% and 25% by weight of the innovation PP container.

Eventually, depending on the application and its market penetration, the TC can ask the Applicant also to perform the tests with a sample of 50% virgin and 50% innovation (i.e. B.100, by replacing the test with B.25).

Table 4: Pellet blends composition for application tests

<table>
<thead>
<tr>
<th>Blend</th>
<th>Composition</th>
<th>% Virgin</th>
<th>Effective % Control</th>
<th>Effective % Innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.0</td>
<td>50% Virgin 50% A.0</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>B.25</td>
<td>50% Virgin 50% A.25</td>
<td>50</td>
<td>37.5</td>
<td>12.5</td>
</tr>
<tr>
<td>B.50</td>
<td>50% Virgin 50% A.50</td>
<td>50</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>OPTIONAL B.100</td>
<td>50% Virgin 50% A.100</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

6.2. **BOTTLES BLOW MOLDING**

On the base of results obtained by pellet characterization, the RecyClass PP Technical Committee and the Applicant can optionally decide to test the innovation for bottles blow molding.

Control blend B.0 has to be molded first.

Table 5: Bottle production purpose & overview

<table>
<thead>
<tr>
<th>Pellet blends Compositions</th>
<th>Kg of blend required</th>
<th>Purpose of blend</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.0 50% Virgin 50% A.0 pellets</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>All tests compared to control values</td>
</tr>
<tr>
<td>B.25 50% Virgin 50% A.25 pellets</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>Required for information on the impact of concentration of the innovation on recycling (comparison to control values)</td>
</tr>
</tbody>
</table>
Procedure:
- The samples B.0, B.25 and B.50 (Optional: B.100) should be blow molded at 190-210°C
1000 ml laundry detergent bottles (with handle), 1 mm thick.
- The cross section can be rectangular or square.
- The bottom corners should have radii as small as commercial laundry detergent bottles.
- Bottle height should be typically for one liter laundry detergent bottles.
- Neck may be offset.
- The bottle must weigh 50 ± 2 grams.
- Samples B.25 and B.50 have to be blown following the identical operating conditions of the control sample B.0.
- Small variations in operating conditions could be acceptable but have to be documented in the report.
- Record properties’ results in Table 6. If some operating conditions have to be modified for B.25 and B.50 samples, this information must be documented in the report.

Replace B.25 with B.100 in the procedure if required by the TC.

6.2.1. Bottle Properties Evaluation

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Result</th>
<th>Standard</th>
<th>Benchmark Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottle Appearance</td>
<td>Visual defects including surface roughness</td>
<td>Minimum for 10 bottles (compare with B.0)</td>
<td></td>
</tr>
<tr>
<td>Bottle Integrity</td>
<td>Visual inspections</td>
<td>Minimum for 10 bottles (compare with B.0)</td>
<td></td>
</tr>
<tr>
<td>Bottle Dimension</td>
<td>Height</td>
<td>±2% respect to B.0</td>
<td></td>
</tr>
<tr>
<td>Bottle Weight</td>
<td>Weight</td>
<td>±2% respect to B.0</td>
<td></td>
</tr>
<tr>
<td>Bottle Capacity</td>
<td>Brimful</td>
<td>±2% respect to B.0</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>Top, mid and bottom side wall, shoulder, base corner</td>
<td>Minimum 0.3 mm for each measure</td>
<td></td>
</tr>
</tbody>
</table>
Top load | ASTM D2659 (no ISO available) | <5% decrease respect to B.0
Drop impact | ASTM D2463, procedure B (no ISO available) | No less than 95% mean failure height respect to B.0
Additional observation | Deposit on tooling | None observed respect to B.0 for 2 hours bottle production

6.2.2. Tensile Properties Testing

Tensile properties have to be tested for bottle application to minimize the influence of a subsequent processing and obtain a more realistic comparison.

Table 7: Bottle tensile properties evaluation

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Result</th>
<th>Standard</th>
<th>Benchmark Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress at Yield (MPa)</td>
<td></td>
<td>ISO 527-2</td>
<td>Compare B.25 and B.50 (and eventually B.100) with B.0</td>
</tr>
<tr>
<td>Stress at Break (MPa)</td>
<td></td>
<td>ISO 527-2</td>
<td>Compare B.25 and B.50 (and eventually B.100) with B.0</td>
</tr>
<tr>
<td>Elongation at Break (%)</td>
<td></td>
<td>ISO 527-2</td>
<td>Compare B.25 and B.50 (and eventually B.100) with B.0</td>
</tr>
<tr>
<td>Elongation at Yield (%)</td>
<td></td>
<td>ISO 527-2</td>
<td>Compare B.25 and B.50 (and eventually B.100) with B.0</td>
</tr>
<tr>
<td>Strength (MPa)</td>
<td></td>
<td>ISO 527-2</td>
<td>Compare B.25 and B.50 (and eventually B.100) with B.0</td>
</tr>
<tr>
<td>Elongation at Strength (%)</td>
<td></td>
<td>ISO 527-2</td>
<td>Compare B.25 and B.50 (and eventually B.100) with B.0</td>
</tr>
</tbody>
</table>
6.3. Sheets Extrusion

On the base of results obtained by pellet characterization, the RecyClass PP Technical Committee and the Applicant can optionally decide to test the innovation for sheet extrusion.

As reported in the section 5.1, prepare three different blends with 0% innovation (50% virgin and 50% A.0 pellets), 12.5% innovation (50% virgin and 50% A.25 pellets), and 25% innovation (50% virgin and 50% A.50 pellets). Tag them as C.0, C.25 and C.50, respectively.

Eventually, depending on the application and its market penetration, the TC can ask the Applicant also to perform the tests with a sample of 50% virgin and 50% innovation (i.e. C.100, by replacing the test with C.25).

Control pellet blend C.0 has to be extruded first. See more information in Table 8.

Table 8: Sheet production process & overview

<table>
<thead>
<tr>
<th>Pellet Compositions</th>
<th>Kg of blend required</th>
<th>Purpose of blend</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.0 50% Virgin 50% A.0 pellets</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>All tests compared to control values</td>
</tr>
<tr>
<td>C.25 50% Virgin 50% A.25 pellets</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>Required for information on the impact of concentration of the innovation on recycling (comparison to control values)</td>
</tr>
<tr>
<td>C.50 50% Virgin 50% A.50 pellets</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>Required for comparison to control values</td>
</tr>
<tr>
<td>OPTIONAL C.100 50% Virgin 50% A.100 pellets</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>Optional, for information on the impact of higher concentration of the innovation on recycling (comparison to control values and C.50 values)</td>
</tr>
</tbody>
</table>

Procedure:
- Dry samples C.0, C.25 and C.50 (optional: C.100) at 90°C for 2 hours.
- Extrude sheets at 220°C with thickness of 1000 µm under conditions determined for the control sample C.0.
- Extrusion run time per variable, no less than 30 minutes.
- Samples C.25 and C.50 have to be extruded following the identical operating conditions of the control sample C.0.
- Small variations in operating conditions could be acceptable but have to be documented in the report.
Record properties’ results in Table 9. If some operating conditions have to be modified for C.25 and C.50 samples, this information must be documented in the report.

Replace C.25 with C.100 in the procedure if required by the TC.

6.3.1. Sheet Properties Evaluation

Table 9: Sheet properties evaluation

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Result</th>
<th>Standard</th>
<th>Benchmark Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile modulus</td>
<td>ISO 527</td>
<td>± 10% to C.0</td>
<td></td>
</tr>
<tr>
<td>Tensile Strength at Yield</td>
<td>ISO 527</td>
<td>± 10% to C.0</td>
<td></td>
</tr>
<tr>
<td>Tensile Strength at Break</td>
<td>ISO 527</td>
<td>maximum - 10 % than C.0</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>Visual inspection</td>
<td>No discoloration</td>
<td></td>
</tr>
<tr>
<td>Surface Appearance</td>
<td>Visual inspection</td>
<td>No black specks</td>
<td></td>
</tr>
<tr>
<td>Inclusions of extraneous material</td>
<td>Visual inspection</td>
<td>Record</td>
<td></td>
</tr>
<tr>
<td>Charpy impact</td>
<td>ISO 179/1eA</td>
<td>± 10% to C.0</td>
<td></td>
</tr>
</tbody>
</table>

6.4. Injection Molding

On the base of results obtained by pellet characterization, the RecyClass PP Technical Committee and the Applicant can decide to test the innovation for injection molding. According to the values reported in the following Table 10 the pellets have to be directly injected without any dilution with virgin material. Tag the blends as D.0, D.25 and D.50, respectively.

Eventually, depending on the application and its market penetration, the TC can ask the Applicant also to perform the tests with a sample of 100% innovation (i.e. D.100, by replacing the test with D.25).

Control blend D.0 has to be molded first. See more information in Table 10.
Table 10: Plaque production purpose & overview

<table>
<thead>
<tr>
<th>Pellet Compositions</th>
<th>Kg of blend required</th>
<th>Purpose of blend</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.0 100% A.0 pellets</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>All tests compared to control values</td>
</tr>
<tr>
<td>D.25 100% A.25 pellets</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>Required for information on the impact of concentration of the innovation on recycling (comparison to control values)</td>
</tr>
<tr>
<td>D.50 100% A.50 pellets</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>Required for comparison to control values</td>
</tr>
<tr>
<td>OPTIONAL D.100 100% A.100 pellets</td>
<td>Per lab requirement for a 30-minute run time</td>
<td>Optional, for information on the impact of higher concentration of the innovation on recycling (comparison to control values and D.50 values)</td>
</tr>
</tbody>
</table>

Procedure:
- The samples D.0, D.25 and D.50 (optional: D.100) should be injection molded at 250-270 °C to multipurpose specimens type 1A according to EN ISO 527-2 and to plates with measures of about 60 x 60 x 2 mm³.
- The samples D.0, D.25 and D.50 (optional: D.100) have to be dried at 90 °C for 2 hours.
- Sample D.0 has to be molded first.
- The run time is variable, but should be not less than 30 min.
- Samples D.25 and D.50 (optional: D.100) have to be molded following the identical operating conditions
- Small variations in operating conditions could be acceptable but have to be documented in the report.
- For each material monitor the heat stability and the injection pressure.

Record properties’ results in Table 11 and 12. If some operating conditions have to be modified for D.25 and D.50 samples, this information must be documented in the report.

Replace D.25 with D.100 in the procedure if required by the TC.
6.4.1. Multipurpose Specimens and Plates Evaluation

Table 11: Properties evaluation for multipurpose specimens

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Result</th>
<th>Standard</th>
<th>Benchmark Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Weight</td>
<td>± 2% to D.0</td>
<td></td>
</tr>
<tr>
<td>Dimension</td>
<td>Length</td>
<td>± 2% to D.0</td>
<td></td>
</tr>
<tr>
<td>Tensile test</td>
<td>Stress at Yield</td>
<td>ISO 527-1</td>
<td>± 10% to D.0</td>
</tr>
<tr>
<td></td>
<td>Strain at Yield</td>
<td>ISO 527-1</td>
<td>± 10% to D.0</td>
</tr>
<tr>
<td></td>
<td>Stress at Break</td>
<td>ISO 527-1</td>
<td>± 10% to D.0</td>
</tr>
<tr>
<td></td>
<td>Elongation at Break</td>
<td>ISO 527-1</td>
<td>± 10% to D.0</td>
</tr>
<tr>
<td></td>
<td>Tensile Strength</td>
<td>ISO 527-1</td>
<td>± 10% to D.0</td>
</tr>
<tr>
<td>Flexural modulus measurement</td>
<td>Flexural modulus</td>
<td>ISO 178</td>
<td>± 10% to D.0</td>
</tr>
<tr>
<td>Charpy impact test</td>
<td>Impact Strength</td>
<td>ISO 179-2</td>
<td>± 10% to D.0</td>
</tr>
<tr>
<td>Charpy impact test</td>
<td>Impact Energy</td>
<td>ISO 179-2</td>
<td>± 10% to D.0</td>
</tr>
</tbody>
</table>

Table 12: Properties evaluation for the plates

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Result</th>
<th>Standard</th>
<th>Benchmark Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>visual</td>
<td>compare with D.0</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Lab*</td>
<td>compare with D.0</td>
<td></td>
</tr>
<tr>
<td>Gloss</td>
<td>ASTM D2457</td>
<td>compare with D.0</td>
<td></td>
</tr>
<tr>
<td>Inclusions</td>
<td>visual</td>
<td>compare with D.0</td>
<td></td>
</tr>
</tbody>
</table>
ANNEX I - CONTROL SAMPLES SELECTION

<table>
<thead>
<tr>
<th>PP</th>
<th>Applications</th>
<th>density, g/cm³</th>
<th>MFI, g/10min (230 °C/2.16 kg)</th>
<th>Flexural modulus, MPa</th>
<th>Charpy impact, KJ/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB206MO</td>
<td>Bottles (Food, cosmetics)</td>
<td>0.905</td>
<td>1.9</td>
<td>1100</td>
<td>7</td>
</tr>
<tr>
<td>BB125MO</td>
<td>Bottles (industrial chemicals)</td>
<td>0.905</td>
<td>1.3</td>
<td>1200</td>
<td>50</td>
</tr>
<tr>
<td>RB307MO</td>
<td>Containers (detergents, cleaners, chemicals, oil)</td>
<td>0.905</td>
<td>1.5</td>
<td>850</td>
<td>20</td>
</tr>
<tr>
<td>HC205TF</td>
<td>Thermoforming (trays, cap, container)</td>
<td>0.905</td>
<td>4</td>
<td>1700</td>
<td>5</td>
</tr>
<tr>
<td>BH345MO</td>
<td>Thin wall packaging</td>
<td>0.905</td>
<td>45</td>
<td>1300</td>
<td>6</td>
</tr>
</tbody>
</table>